CoOperative SYnapse NEuroevolution (COSYNE)
- class pypop7.optimizers.cc.cosyne.COSYNE(problem, options)[source]
CoOperative SYnapse NEuroevolution (COSYNE).
Note
This is a wrapper of COSYNE, which has been implemented in the Python library EvoTorch, with slight modifications.
- Parameters:
problem (dict) –
- problem arguments with the following common settings (keys):
’fitness_function’ - objective function to be minimized (func),
’ndim_problem’ - number of dimensionality (int),
’upper_boundary’ - upper boundary of search range (array_like),
’lower_boundary’ - lower boundary of search range (array_like).
options (dict) –
- optimizer options with the following common settings (keys):
’max_function_evaluations’ - maximum of function evaluations (int, default: np.inf),
’max_runtime’ - maximal runtime to be allowed (float, default: np.inf),
’seed_rng’ - seed for random number generation needed to be explicitly set (int);
- and with the following particular settings (keys):
’sigma’ - initial global step-size for Gaussian search distribution (float),
’n_individuals’ - number of individuals/samples, aka population size (int, default: 100),
’n_tournaments’ - number of tournaments for one-point crossover (int, default: 10),
’ratio_elitists’ - ratio of elitists (float, default: 0.3).
Examples
Use the optimizer to minimize the well-known test function Rosenbrock:
1>>> import numpy 2>>> from pypop7.benchmarks.base_functions import rosenbrock # function to be minimized 3>>> from pypop7.optimizers.cc.cosyne import COSYNE 4>>> problem = {'fitness_function': rosenbrock, # define problem arguments 5... 'ndim_problem': 2, 6... 'lower_boundary': -5*numpy.ones((2,)), 7... 'upper_boundary': 5*numpy.ones((2,))} 8>>> options = {'max_function_evaluations': 5000, # set optimizer options 9... 'seed_rng': 2022, 10... 'sigma': 0.3, 11... 'x': 3*numpy.ones((2,))} 12>>> cosyne = COSYNE(problem, options) # initialize the optimizer class 13>>> results = cosyne.optimize() # run the optimization process 14>>> # return the number of function evaluations and best-so-far fitness 15>>> print(f"COSYNE: {results['n_function_evaluations']}, {results['best_so_far_y']}") 16COSYNE: 5000, 0.005023488269997175
For its correctness checking of coding, refer to this code-based repeatability report for more details.
- n_individuals
number of individuals/samples, aka population size.
- Type:
int
- n_tournaments
number of tournaments for one-point crossover.
- Type:
int
- ratio_elitists
ratio of elitists.
- Type:
float
- sigma
initial global step-size for Gaussian search (mutation/sampling) distribution.
- Type:
float
References
Gomez, F., Schmidhuber, J. and Miikkulainen, R., 2008. Accelerated neural evolution through cooperatively coevolved synapses. Journal of Machine Learning Research, 9(31), pp.937-965. https://jmlr.org/papers/v9/gomez08a.html
https://docs.evotorch.ai/v0.3.0/reference/evotorch/algorithms/ga/#evotorch.algorithms.ga.Cosyne https://github.com/nnaisense/evotorch/blob/master/src/evotorch/algorithms/ga.py