Comprehensive Learning Particle Swarm Optimizer (CLPSO)

class pypop7.optimizers.pso.clpso.CLPSO(problem, options)[source]

Comprehensive Learning Particle Swarm Optimizer (CLPSO).

Parameters:
  • problem (dict) –

    problem arguments with the following common settings (keys):
    • ’fitness_function’ - objective function to be minimized (func),

    • ’ndim_problem’ - number of dimensionality (int),

    • ’upper_boundary’ - upper boundary of search range (array_like),

    • ’lower_boundary’ - lower boundary of search range (array_like).

  • options (dict) –

    optimizer options with the following common settings (keys):
    • ’max_function_evaluations’ - maximum of function evaluations (int, default: np.inf),

    • ’max_runtime’ - maximal runtime to be allowed (float, default: np.inf),

    • ’seed_rng’ - seed for random number generation needed to be explicitly set (int);

    and with the following particular settings (keys):
    • ’n_individuals’ - swarm (population) size, aka number of particles (int, default: 20),

    • ’c’ - comprehensive learning rate (float, default: 1.49445),

    • ’m’ - refreshing gap (int, default: 7),

    • ’max_ratio_v’ - maximal ratio of velocities w.r.t. search range (float, default: 0.2).

Examples

Use the optimizer to minimize the well-known test function Rosenbrock:

 1>>> import numpy
 2>>> from pypop7.benchmarks.base_functions import rosenbrock  # function to be minimized
 3>>> from pypop7.optimizers.pso.clpso import CLPSO
 4>>> problem = {'fitness_function': rosenbrock,  # define problem arguments
 5...            'ndim_problem': 2,
 6...            'lower_boundary': -5*numpy.ones((2,)),
 7...            'upper_boundary': 5*numpy.ones((2,))}
 8>>> options = {'max_function_evaluations': 5000,  # set optimizer options
 9...            'seed_rng': 2022}
10>>> clpso = CLPSO(problem, options)  # initialize the optimizer class
11>>> results = clpso.optimize()  # run the optimization process
12>>> # return the number of function evaluations and best-so-far fitness
13>>> print(f"CLPSO: {results['n_function_evaluations']}, {results['best_so_far_y']}")
14CLPSO: 5000, 7.184727085112434e-05

For its correctness checking of coding, refer to this code-based repeatability report for more details.

c

comprehensive learning rate.

Type:

float

m

refreshing gap.

Type:

int

max_ratio_v

maximal ratio of velocities w.r.t. search range.

Type:

float

n_individuals

swarm (population) size, aka number of particles.

Type:

int

References

Liang, J.J., Qin, A.K., Suganthan, P.N. and Baskar, S., 2006. Comprehensive learning particle swarm optimizer for global optimization of multimodal functions. IEEE Transactions on Evolutionary Computation, 10(3), pp.281-295. https://ieeexplore.ieee.org/abstract/document/1637688

See the original MATLAB source code from Prof. Suganthan: https://github.com/P-N-Suganthan/CODES/blob/master/2006-IEEE-TEC-CLPSO.zip