Simple Random Search (SRS)

class pypop7.optimizers.rs.srs.SRS(problem, options)[source]

Simple Random Search (SRS).

Note

SRS is an adaptive random search method, originally designed by Rosenstein and Barto for direct policy search in reinforcement learning. Since it uses a simple individual-based random sampling strategy, it easily suffers from a limited exploration ability for large-scale black-box optimization (LSBBO). Therefore, it is highly recommended to first attempt more advanced (e.g. population-based) methods for LSBBO.

Here we include it mainly for benchmarking purpose.

Parameters:
  • problem (dict) –

    problem arguments with the following common settings (keys):
    • ’fitness_function’ - objective function to be minimized (func),

    • ’ndim_problem’ - number of dimensionality (int),

    • ’upper_boundary’ - upper boundary of search range (array_like),

    • ’lower_boundary’ - lower boundary of search range (array_like).

  • options (dict) –

    optimizer options with the following common settings (keys):
    • ’max_function_evaluations’ - maximum of function evaluations (int, default: np.Inf),

    • ’max_runtime’ - maximal runtime to be allowed (float, default: np.Inf),

    • ’seed_rng’ - seed for random number generation needed to be explicitly set (int);

    and with the following particular settings (keys):
    • ’sigma’ - initial global step-size (float),

    • ’x’ - initial (starting) point (array_like),

      • if not given, it will draw a random sample from the uniform distribution whose search range is bounded by problem[‘lower_boundary’] and problem[‘upper_boundary’].

    • ’alpha’ - factor of global step-size (float, default: 0.3),

    • ’beta’ - adjustment probability for exploration-exploitation trade-off (float, default: 0.0),

    • ’gamma’ - factor of search decay (float, default: 0.99),

    • ’min_sigma’ - minimum of global step-size (float, default: 0.01).

Examples

Use the optimizer to minimize the well-known test function Rosenbrock:

 1>>> import numpy
 2>>> from pypop7.benchmarks.base_functions import rosenbrock  # function to be minimized
 3>>> from pypop7.optimizers.rs.srs import SRS
 4>>> problem = {'fitness_function': rosenbrock,  # define problem arguments
 5...            'ndim_problem': 2,
 6...            'lower_boundary': -5*numpy.ones((2,)),
 7...            'upper_boundary': 5*numpy.ones((2,))}
 8>>> options = {'max_function_evaluations': 5000,  # set optimizer options
 9...            'seed_rng': 2022,
10...            'x': 3*numpy.ones((2,)),
11...            'sigma': 0.1}
12>>> srs = SRS(problem, options)  # initialize the optimizer class
13>>> results = srs.optimize()  # run the optimization process
14>>> # return the number of used function evaluations and found best-so-far fitness
15>>> print(f"SRS: {results['n_function_evaluations']}, {results['best_so_far_y']}")
16SRS: 5000, 0.0017821578376762473

For its correctness checking of coding, the code-based repeatability report cannot be provided owing to the lack of its simulation environment in the original paper. Instead, we used the comparison-based strategy to validate its correctness as much as possible (though there still has a risk to be wrong).

alpha

factor of global step-size.

Type:

float

beta

adjustment probability for exploration-exploitation trade-off.

Type:

float

gamma

factor of search decay.

Type:

float

min_sigma

minimum of global step-size.

Type:

float

sigma

final global step-size (updated during optimization).

Type:

float

x

initial (starting) point.

Type:

array_like

References

Rosenstein, M.T. and Grupen, R.A., 2002, May. Velocity-dependent dynamic manipulability. In Proceedings of IEEE International Conference on Robotics and Automation (pp. 2424-2429). IEEE. https://ieeexplore.ieee.org/abstract/document/1013595

Rosenstein, M.T. and Barto, A.G., 2001, August. Robot weightlifting by direct policy search. In International Joint Conference on Artificial Intelligence (pp. 839-846). https://dl.acm.org/doi/abs/10.5555/1642194.1642206