Source code for pypop7.optimizers.de.jade

import numpy as np
from scipy.stats import cauchy

from pypop7.optimizers.de.de import DE


[docs]class JADE(DE): """Adaptive Differential Evolution (JADE). Parameters ---------- problem : `dict` problem arguments with the following common settings (`keys`): * 'fitness_function' - objective function to be **minimized** (`func`), * 'ndim_problem' - number of dimensionality (`int`), * 'upper_boundary' - upper boundary of search range (`array_like`), * 'lower_boundary' - lower boundary of search range (`array_like`). options : `dict` optimizer options with the following common settings (`keys`): * 'max_function_evaluations' - maximum of function evaluations (`int`, default: `np.Inf`), * 'max_runtime' - maximal runtime to be allowed (`float`, default: `np.Inf`), * 'seed_rng' - seed for random number generation needed to be *explicitly* set (`int`); and with the following particular settings (`keys`): * 'n_individuals' - number of offspring, aka offspring population size (`int`, default: `100`), * 'mu' - mean of normal distribution for adaptation of crossover probability (`float`, default: `0.5`), * 'median' - median of Cauchy distribution for adaptation of mutation factor (`float`, default: `0.5`), * 'p' - level of greediness of mutation strategy (`float`, default: `0.05`), * 'c' - life span (`float`, default: `0.1`), * 'is_bound' - flag to limit all samplings inside the search range (`boolean`, default: `False`). Examples -------- Use the optimizer to minimize the well-known test function `Rosenbrock <http://en.wikipedia.org/wiki/Rosenbrock_function>`_: .. code-block:: python :linenos: >>> import numpy >>> from pypop7.benchmarks.base_functions import rosenbrock # function to be minimized >>> from pypop7.optimizers.de.jade import JADE >>> problem = {'fitness_function': rosenbrock, # define problem arguments ... 'ndim_problem': 2, ... 'lower_boundary': -5*numpy.ones((2,)), ... 'upper_boundary': 5*numpy.ones((2,))} >>> options = {'max_function_evaluations': 5000, # set optimizer options ... 'seed_rng': 0} >>> jade = JADE(problem, options) # initialize the optimizer class >>> results = jade.optimize() # run the optimization process >>> # return the number of function evaluations and best-so-far fitness >>> print(f"JADE: {results['n_function_evaluations']}, {results['best_so_far_y']}") JADE: 5000, 4.844728910084905e-05 For its correctness checking of coding, refer to `this code-based repeatability report <https://tinyurl.com/bddsba5s>`_ for more details. Attributes ---------- c : `float` life span. is_bound : `boolean` flag to limit all samplings inside the search range. median : `float` median of Cauchy distribution for adaptation of mutation factor. mu : `float` mean of normal distribution for adaptation of crossover probability. n_individuals : `int` number of offspring, offspring population size. p : `float` level of greediness of mutation strategy. References ---------- Zhang, J., and Sanderson, A. C. 2009. JADE: Adaptive differential evolution with optional external archive. IEEE Transactions on Evolutionary Computation, 13(5), pp.945–958. https://ieeexplore.ieee.org/document/5208221/ """ def __init__(self, problem, options): DE.__init__(self, problem, options) self.mu = options.get('mu', 0.5) # mean of normal distribution for adaptation of crossover probabilities self.median = options.get('median', 0.5) # location of Cauchy distribution for adaptation of mutation factor self.p = options.get('p', 0.05) # level of greediness of the mutation strategy assert 0.0 <= self.p <= 1.0 self.c = options.get('c', 0.1) # life span assert 0.0 <= self.c <= 1.0 self.is_bound = options.get('is_bound', False) def initialize(self, args=None): x = self.rng_initialization.uniform(self.initial_lower_boundary, self.initial_upper_boundary, size=(self.n_individuals, self.ndim_problem)) # population y = np.empty((self.n_individuals,)) # fitness for i in range(self.n_individuals): if self._check_terminations(): break y[i] = self._evaluate_fitness(x[i], args) a = np.empty((0, self.ndim_problem)) # set of archived inferior solutions return x, y, a def bound(self, x=None, xx=None): if not self.is_bound: return x for k in range(self.n_individuals): idx = np.array(x[k] < self.lower_boundary) if idx.any(): x[k][idx] = (self.lower_boundary + xx[k])[idx]/2.0 idx = np.array(x[k] > self.upper_boundary) if idx.any(): x[k][idx] = (self.upper_boundary + xx[k])[idx]/2.0 return x def mutate(self, x=None, y=None, a=None): x_mu = np.empty((self.n_individuals, self.ndim_problem)) # mutated population f_mu = np.empty((self.n_individuals,)) # mutated mutation factors order = np.argsort(y)[:int(np.ceil(self.p*self.n_individuals))] # index of the [100*p]% best individuals x_p = x[self.rng_optimization.choice(order, (self.n_individuals,))] x_un = np.vstack((np.copy(x), a)) # archive for k in range(self.n_individuals): f_mu[k] = cauchy.rvs(loc=self.median, scale=0.1, random_state=self.rng_optimization) while f_mu[k] <= 0.0: f_mu[k] = cauchy.rvs(loc=self.median, scale=0.1, random_state=self.rng_optimization) if f_mu[k] > 1.0: f_mu[k] = 1.0 r1 = self.rng_optimization.choice([i for i in range(self.n_individuals) if i != k]) r2 = self.rng_optimization.choice([i for i in range(len(x_un)) if i != k and i != r1]) x_mu[k] = x[k] + f_mu[k]*(x_p[k] - x[k]) + f_mu[k]*(x[r1] - x_un[r2]) return x_mu, f_mu def crossover(self, x_mu=None, x=None): x_cr = np.copy(x) p_cr = self.rng_optimization.normal(self.mu, 0.1, (self.n_individuals,)) # crossover probabilities # truncate to [0, 1] p_cr = np.minimum(np.maximum(p_cr, 0.0), 1.0) for k in range(self.n_individuals): i_rand = self.rng_optimization.integers(self.ndim_problem) for i in range(self.ndim_problem): if (i == i_rand) or (self.rng_optimization.random() < p_cr[k]): x_cr[k, i] = x_mu[k, i] return x_cr, p_cr def select(self, args=None, x=None, y=None, x_cr=None, a=None, f_mu=None, p_cr=None): f = np.empty((0,)) # set of all successful mutation factors p = np.empty((0,)) # set of all successful crossover probabilities for k in range(self.n_individuals): if self._check_terminations(): break yy = self._evaluate_fitness(x_cr[k], args) if yy < y[k]: a = np.vstack((a, x[k])) # archive of the inferior solution f = np.hstack((f, f_mu[k])) # archive of the successful mutation factor p = np.hstack((p, p_cr[k])) # archive of the successful crossover probability x[k] = x_cr[k] y[k] = yy if len(p) != 0: # for mean update of normal distribution self.mu = (1.0 - self.c)*self.mu + self.c*np.mean(p) if len(f) != 0: # for location update of Cauchy distribution self.median = (1.0 - self.c)*self.median + self.c*np.sum(np.power(f, 2))/np.sum(f) return x, y, a def iterate(self, x=None, y=None, a=None, args=None): x_mu, f_mu = self.mutate(x, y, a) x_cr, p_cr = self.crossover(x_mu, x) x_cr = self.bound(x_cr, x) x, y, a = self.select(args, x, y, x_cr, a, f_mu, p_cr) # randomly remove solutions to keep the archive size fixed if len(a) > self.n_individuals: a = np.delete(a, self.rng_optimization.choice(len(a), (len(a) - self.n_individuals,), False), 0) self._n_generations += 1 return x, y, a def optimize(self, fitness_function=None, args=None): fitness = DE.optimize(self, fitness_function) x, y, a = self.initialize(args) while not self._check_terminations(): self._print_verbose_info(fitness, y) x, y, a = self.iterate(x, y, a, args) return self._collect(fitness, y)