Adaptive Differential Evolution (JADE)¶
- class pypop7.optimizers.de.jade.JADE(problem, options)¶
Adaptive Differential Evolution (JADE).
- Parameters:
problem (dict) –
- problem arguments with the following common settings (keys):
’fitness_function’ - objective function to be minimized (func),
’ndim_problem’ - number of dimensionality (int),
’upper_boundary’ - upper boundary of search range (array_like),
’lower_boundary’ - lower boundary of search range (array_like).
options (dict) –
- optimizer options with the following common settings (keys):
’max_function_evaluations’ - maximum of function evaluations (int, default: np.Inf),
’max_runtime’ - maximal runtime to be allowed (float, default: np.Inf),
’seed_rng’ - seed for random number generation needed to be explicitly set (int);
- and with the following particular settings (keys):
’n_individuals’ - number of offspring, aka offspring population size (int, default: 100),
’mu’ - mean of normal distribution for adaptation of crossover probability (float, default: 0.5),
’median’ - median of Cauchy distribution for adaptation of mutation factor (float, default: 0.5),
’p’ - level of greediness of mutation strategy (float, default: 0.05),
’c’ - life span (float, default: 0.1),
’is_bound’ - flag to limit all samplings inside the search range (boolean, default: False).
Examples
Use the optimizer to minimize the well-known test function Rosenbrock:
1>>> import numpy 2>>> from pypop7.benchmarks.base_functions import rosenbrock # function to be minimized 3>>> from pypop7.optimizers.de.jade import JADE 4>>> problem = {'fitness_function': rosenbrock, # define problem arguments 5... 'ndim_problem': 2, 6... 'lower_boundary': -5*numpy.ones((2,)), 7... 'upper_boundary': 5*numpy.ones((2,))} 8>>> options = {'max_function_evaluations': 5000, # set optimizer options 9... 'seed_rng': 0} 10>>> jade = JADE(problem, options) # initialize the optimizer class 11>>> results = jade.optimize() # run the optimization process 12>>> # return the number of function evaluations and best-so-far fitness 13>>> print(f"JADE: {results['n_function_evaluations']}, {results['best_so_far_y']}") 14JADE: 5000, 4.844728910084905e-05
For its correctness checking of coding, refer to this code-based repeatability report for more details.
- c¶
life span.
- Type:
float
- is_bound¶
flag to limit all samplings inside the search range.
- Type:
boolean
- median¶
median of Cauchy distribution for adaptation of mutation factor.
- Type:
float
- mu¶
mean of normal distribution for adaptation of crossover probability.
- Type:
float
- n_individuals¶
number of offspring, offspring population size.
- Type:
int
- p¶
level of greediness of mutation strategy.
- Type:
float
References
Zhang, J., and Sanderson, A. C. 2009. JADE: Adaptive differential evolution with optional external archive. IEEE Transactions on Evolutionary Computation, 13(5), pp.945–958. https://ieeexplore.ieee.org/document/5208221/