Success-History based Adaptive Differential Evolution (SHADE)
- class pypop7.optimizers.de.shade.SHADE(problem, options)[source]
Success-History based Adaptive Differential Evolution (SHADE).
- Parameters:
problem (dict) –
- problem arguments with the following common settings (keys):
’fitness_function’ - objective function to be minimized (func),
’ndim_problem’ - number of dimensionality (int),
’upper_boundary’ - upper boundary of search range (array_like),
’lower_boundary’ - lower boundary of search range (array_like).
options (dict) –
- optimizer options with the following common settings (keys):
’max_function_evaluations’ - maximum of function evaluations (int, default: np.inf),
’max_runtime’ - maximal runtime to be allowed (float, default: np.inf),
’seed_rng’ - seed for random number generation needed to be explicitly set (int);
- and with the following particular settings (keys):
’n_individuals’ - number of offspring, aka offspring population size (int, default: 100),
’mu’ - mean of normal distribution for adaptation of crossover probability (float, default: 0.5),
’median’ - median of Cauchy distribution for adaptation of mutation factor (float, default: 0.5),
’h’ - length of historical memory (int, default: 100).
Examples
Use the optimizer to minimize the well-known test function Rosenbrock:
1>>> import numpy 2>>> from pypop7.benchmarks.base_functions import rosenbrock # function to be minimized 3>>> from pypop7.optimizers.de.shade import SHADE 4>>> problem = {'fitness_function': rosenbrock, # define problem arguments 5... 'ndim_problem': 2, 6... 'lower_boundary': -5*numpy.ones((2,)), 7... 'upper_boundary': 5*numpy.ones((2,))} 8>>> options = {'max_function_evaluations': 5000, # set optimizer options 9... 'seed_rng': 0} 10>>> shade = SHADE(problem, options) # initialize the optimizer class 11>>> results = shade.optimize() # run the optimization process 12>>> # return the number of function evaluations and best-so-far fitness 13>>> print(f"SHADE: {results['n_function_evaluations']}, {results['best_so_far_y']}") 14SHADE: 5000, 6.231767087114823e-05
For its correctness checking of coding, refer to this code-based repeatability report for more details.
- h
length of historical memory.
- Type:
int
- median
median of Cauchy distribution for adaptation of mutation factor.
- Type:
float
- mu
mean of normal distribution for adaptation of crossover probability.
- Type:
float
- n_individuals
number of offspring, aka offspring population size.
- Type:
int
References
Tanabe, R. and Fukunaga, A., 2013, June. Success-history based parameter adaptation for differential evolution. In IEEE Congress on Evolutionary Computation (pp. 71-78). IEEE.