Trigonometric-mutation Differential Evolution (TDE)¶
- class pypop7.optimizers.de.tde.TDE(problem, options)¶
Trigonometric-mutation Differential Evolution (TDE).
- Parameters:
problem (dict) –
- problem arguments with the following common settings (keys):
’fitness_function’ - objective function to be minimized (func),
’ndim_problem’ - number of dimensionality (int),
’upper_boundary’ - upper boundary of search range (array_like),
’lower_boundary’ - lower boundary of search range (array_like).
options (dict) –
- optimizer options with the following common settings (keys):
’max_function_evaluations’ - maximum of function evaluations (int, default: np.Inf),
’max_runtime’ - maximal runtime to be allowed (float, default: np.Inf),
’seed_rng’ - seed for random number generation needed to be explicitly set (int);
- and with the following particular settings (keys):
’n_individuals’ - number of offspring, aka offspring population size (int, default: 30),
’f’ - mutation factor (float, default: 0.99),
’cr’ - crossover probability (float, default: 0.85),
’tm’ - trigonometric mutation probability (float, default: 0.05).
Examples
Use the optimizer to minimize the well-known test function Rosenbrock:
1>>> import numpy 2>>> from pypop7.benchmarks.base_functions import rosenbrock # function to be minimized 3>>> from pypop7.optimizers.de.tde import TDE 4>>> problem = {'fitness_function': rosenbrock, # define problem arguments 5... 'ndim_problem': 2, 6... 'lower_boundary': -5*numpy.ones((2,)), 7... 'upper_boundary': 5*numpy.ones((2,))} 8>>> options = {'max_function_evaluations': 5000, # set optimizer options 9... 'seed_rng': 0} 10>>> tde = TDE(problem, options) # initialize the optimizer class 11>>> results = tde.optimize() # run the optimization process 12>>> # return the number of function evaluations and best-so-far fitness 13>>> print(f"TDE: {results['n_function_evaluations']}, {results['best_so_far_y']}") 14TDE: 5000, 6.420787226215637e-21
For its correctness checking of coding, refer to this code-based repeatability report for more details.
- cr¶
crossover probability.
- Type:
float
- f¶
mutation factor.
- Type:
float
- tm¶
trigonometric mutation probability.
- Type:
‘float
- n_individuals¶
number of offspring, aka offspring population size.
- Type:
int
References
Fan, H.Y. and Lampinen, J., 2003. A trigonometric mutation operation to differential evolution. Journal of Global Optimization, 27(1), pp.105-129. https://link.springer.com/article/10.1023/A:1024653025686