Source code for pypop7.optimizers.de.shade

import numpy as np
from scipy.stats import cauchy

from pypop7.optimizers.de.jade import JADE


[docs]class SHADE(JADE): """Success-History based Adaptive Differential Evolution (SHADE). Parameters ---------- problem : `dict` problem arguments with the following common settings (`keys`): * 'fitness_function' - objective function to be **minimized** (`func`), * 'ndim_problem' - number of dimensionality (`int`), * 'upper_boundary' - upper boundary of search range (`array_like`), * 'lower_boundary' - lower boundary of search range (`array_like`). options : `dict` optimizer options with the following common settings (`keys`): * 'max_function_evaluations' - maximum of function evaluations (`int`, default: `np.Inf`), * 'max_runtime' - maximal runtime to be allowed (`float`, default: `np.Inf`), * 'seed_rng' - seed for random number generation needed to be *explicitly* set (`int`); and with the following particular settings (`keys`): * 'n_individuals' - number of offspring, aka offspring population size (`int`, default: `100`), * 'mu' - mean of normal distribution for adaptation of crossover probability (`float`, default: `0.5`), * 'median' - median of Cauchy distribution for adaptation of mutation factor (`float`, default: `0.5`), * 'h' - length of historical memory (`int`, default: `100`). Examples -------- Use the optimizer to minimize the well-known test function `Rosenbrock <http://en.wikipedia.org/wiki/Rosenbrock_function>`_: .. code-block:: python :linenos: >>> import numpy >>> from pypop7.benchmarks.base_functions import rosenbrock # function to be minimized >>> from pypop7.optimizers.de.shade import SHADE >>> problem = {'fitness_function': rosenbrock, # define problem arguments ... 'ndim_problem': 2, ... 'lower_boundary': -5*numpy.ones((2,)), ... 'upper_boundary': 5*numpy.ones((2,))} >>> options = {'max_function_evaluations': 5000, # set optimizer options ... 'seed_rng': 0} >>> shade = SHADE(problem, options) # initialize the optimizer class >>> results = shade.optimize() # run the optimization process >>> # return the number of function evaluations and best-so-far fitness >>> print(f"SHADE: {results['n_function_evaluations']}, {results['best_so_far_y']}") SHADE: 5000, 6.231767087114823e-05 For its correctness checking of coding, refer to `this code-based repeatability report <https://tinyurl.com/vm3w7se4>`_ for more details. Attributes ---------- h : `int` length of historical memory. median : `float` median of Cauchy distribution for adaptation of mutation factor. mu : `float` mean of normal distribution for adaptation of crossover probability. n_individuals : `int` number of offspring, aka offspring population size. References ---------- Tanabe, R. and Fukunaga, A., 2013, June. Success-history based parameter adaptation for differential evolution. In IEEE Congress on Evolutionary Computation (pp. 71-78). IEEE. https://ieeexplore.ieee.org/document/6557555 """ def __init__(self, problem, options): JADE.__init__(self, problem, options) self.h = options.get('h', 100) # length of historical memory assert 0 < self.h self.m_mu = np.ones(self.h)*self.mu # means of normal distribution self.m_median = np.ones(self.h)*self.median # medians of Cauchy distribution self._k = 0 # index to update self.p_min = 2.0/self.n_individuals def mutate(self, x=None, y=None, a=None): x_mu = np.empty((self.n_individuals, self.ndim_problem)) # mutated population f_mu = np.empty((self.n_individuals,)) # mutated mutation factors x_un = np.vstack((np.copy(x), a)) # union of population x and archive a r = self.rng_optimization.choice(self.h, (self.n_individuals,)) order = np.argsort(y)[:] p = (0.2 - self.p_min)*self.rng_optimization.random((self.n_individuals,)) + self.p_min idx = [order[self.rng_optimization.choice(int(i))] for i in np.ceil(p*self.n_individuals)] for k in range(self.n_individuals): f_mu[k] = cauchy.rvs(loc=self.m_median[r[k]], scale=0.1, random_state=self.rng_optimization) while f_mu[k] <= 0.0: f_mu[k] = cauchy.rvs(loc=self.m_median[r[k]], scale=0.1, random_state=self.rng_optimization) if f_mu[k] > 1.0: f_mu[k] = 1.0 r1 = self.rng_optimization.choice([i for i in range(self.n_individuals) if i != k]) r2 = self.rng_optimization.choice([i for i in range(len(x_un)) if i != k and i != r1]) x_mu[k] = x[k] + f_mu[k]*(x[idx[k]] - x[k]) + f_mu[k]*(x[r1] - x_un[r2]) return x_mu, f_mu, r def crossover(self, x_mu=None, x=None, r=None): x_cr = np.copy(x) p_cr = np.empty((self.n_individuals,)) # crossover probabilities for k in range(self.n_individuals): p_cr[k] = self.rng_optimization.normal(self.m_mu[r[k]], 0.1) p_cr[k] = np.minimum(np.maximum(p_cr[k], 0.0), 1.0) i_rand = self.rng_optimization.integers(self.ndim_problem) for i in range(self.ndim_problem): if (i == i_rand) or (self.rng_optimization.random() < p_cr[k]): x_cr[k, i] = x_mu[k, i] return x_cr, p_cr def select(self, args=None, x=None, y=None, x_cr=None, a=None, f_mu=None, p_cr=None): # set successful mutation factors, crossover probabilities, fitness differences f, p, d = np.empty((0,)), np.empty((0,)), np.empty((0,)) for k in range(self.n_individuals): if self._check_terminations(): break yy = self._evaluate_fitness(x_cr[k], args) if yy < y[k]: a = np.vstack((a, x[k])) # archive of inferior solutions f = np.hstack((f, f_mu[k])) # archive of successful mutation factors p = np.hstack((p, p_cr[k])) # archive of successful crossover probabilities d = np.hstack((d, y[k] - yy)) # archive of successful fitness differences x[k], y[k] = x_cr[k], yy if (len(p) != 0) and (len(f) != 0): w = d/np.sum(d) self.m_mu[self._k] = np.sum(w*p) # for normal distribution self.m_median[self._k] = np.sum(w*np.power(f, 2))/np.sum(w*f) # for Cauchy distribution self._k = (self._k + 1) % self.h return x, y, a def iterate(self, x=None, y=None, a=None, args=None): x_mu, f_mu, r = self.mutate(x, y, a) x_cr, p_cr = self.crossover(x_mu, x, r) x_cr = self.bound(x_cr, x) x, y, a = self.select(args, x, y, x_cr, a, f_mu, p_cr) if len(a) > self.n_individuals: # randomly remove solutions to keep archive size fixed a = np.delete(a, self.rng_optimization.choice(len(a), (len(a) - self.n_individuals,), False), 0) self._n_generations += 1 return x, y, a