Source code for pypop7.optimizers.es.fmaes

from pypop7.optimizers.es.maes import MAES


[docs]class FMAES(MAES): """Fast Matrix Adaptation Evolution Strategy (FMAES). .. note:: `FMAES` is a *more efficient* implementation of `MAES` with *quadractic* time complexity w.r.t. each sampling, which replaces the computationally expensive matrix-matrix multiplication (*cubic time complexity*) with the combination of matrix-matrix addition and matrix-vector multiplication (*quadractic time complexity*) for transformation matrix adaptation. It is **highly recommended** to first attempt more advanced ES variants (e.g., `LMCMA`, `LMMAES`) for large-scale black-box optimization, since `FMAES` still has a computationally intensive *quadratic* time complexity (w.r.t. each sampling). Parameters ---------- problem : dict problem arguments with the following common settings (`keys`): * 'fitness_function' - objective function to be **minimized** (`func`), * 'ndim_problem' - number of dimensionality (`int`), * 'upper_boundary' - upper boundary of search range (`array_like`), * 'lower_boundary' - lower boundary of search range (`array_like`). options : dict optimizer options with the following common settings (`keys`): * 'max_function_evaluations' - maximum of function evaluations (`int`, default: `np.Inf`), * 'max_runtime' - maximal runtime to be allowed (`float`, default: `np.Inf`), * 'seed_rng' - seed for random number generation needed to be *explicitly* set (`int`); and with the following particular settings (`keys`): * 'sigma' - initial global step-size, aka mutation strength (`float`), * 'mean' - initial (starting) point, aka mean of Gaussian search distribution (`array_like`), * if not given, it will draw a random sample from the uniform distribution whose search range is bounded by `problem['lower_boundary']` and `problem['upper_boundary']`. * 'n_individuals' - number of offspring, aka offspring population size (`int`, default: `4 + int(3*np.log(problem['ndim_problem']))`), * 'n_parents' - number of parents, aka parental population size (`int`, default: `int(options['n_individuals']/2)`). Examples -------- Use the optimizer `FMAES` to minimize the well-known test function `Rosenbrock <http://en.wikipedia.org/wiki/Rosenbrock_function>`_: .. code-block:: python :linenos: >>> import numpy >>> from pypop7.benchmarks.base_functions import rosenbrock # function to be minimized >>> from pypop7.optimizers.es.fmaes import FMAES >>> problem = {'fitness_function': rosenbrock, # define problem arguments ... 'ndim_problem': 2, ... 'lower_boundary': -5.0*numpy.ones((2,)), ... 'upper_boundary': 5.0*numpy.ones((2,))} >>> options = {'max_function_evaluations': 5000, # set optimizer options ... 'seed_rng': 2022, ... 'mean': 3.0*numpy.ones((2,)), ... 'sigma': 0.1} # the global step-size may need to be tuned for better performance >>> fmaes = FMAES(problem, options) # initialize the optimizer class >>> results = fmaes.optimize() # run the optimization process >>> # return the number of function evaluations and best-so-far fitness >>> print(f"FMAES: {results['n_function_evaluations']}, {results['best_so_far_y']}") FMAES: 5000, 2.1296244414852865e-19 For its correctness checking of coding, refer to `this code-based repeatability report <https://tinyurl.com/37ews6h4>`_ for more details. Attributes ---------- mean : `array_like` initial (starting) point, aka mean of Gaussian search distribution. n_individuals : `int` number of offspring, aka offspring population size. n_parents : `int` number of parents, aka parental population size. sigma : `float` final global step-size, aka mutation strength. References ---------- Beyer, H.G., 2020, July. Design principles for matrix adaptation evolution strategies. In Proceedings of Annual Conference on Genetic and Evolutionary Computation Companion (pp. 682-700). https://dl.acm.org/doi/abs/10.1145/3377929.3389870 Loshchilov, I., Glasmachers, T. and Beyer, H.G., 2019. Large scale black-box optimization by limited-memory matrix adaptation. IEEE Transactions on Evolutionary Computation, 23(2), pp.353-358. https://ieeexplore.ieee.org/abstract/document/8410043 Beyer, H.G. and Sendhoff, B., 2017. Simplify your covariance matrix adaptation evolution strategy. IEEE Transactions on Evolutionary Computation, 21(5), pp.746-759. https://ieeexplore.ieee.org/document/7875115 See the official Matlab version from Prof. Beyer: https://homepages.fhv.at/hgb/downloads/ForDistributionFastMAES.tar """ def __init__(self, problem, options): options['_fast_version'] = True # mandatory setting for only FMAES MAES.__init__(self, problem, options)