Source code for pypop7.optimizers.pso.cpso

import numpy as np

from pypop7.optimizers.core.optimizer import Optimizer
from pypop7.optimizers.pso.spso import PSO


[docs]class CPSO(PSO): """Cooperative Particle Swarm Optimizer (CPSO). Parameters ---------- problem : dict problem arguments with the following common settings (`keys`): * 'fitness_function' - objective function to be **minimized** (`func`), * 'ndim_problem' - number of dimensionality (`int`), * 'upper_boundary' - upper boundary of search range (`array_like`), * 'lower_boundary' - lower boundary of search range (`array_like`). options : dict optimizer options with the following common settings (`keys`): * 'max_function_evaluations' - maximum of function evaluations (`int`, default: `np.Inf`), * 'max_runtime' - maximal runtime to be allowed (`float`, default: `np.Inf`), * 'seed_rng' - seed for random number generation needed to be *explicitly* set (`int`); and with the following particular settings (`keys`): * 'n_individuals' - swarm (population) size, aka number of particles (`int`, default: `20`), * 'cognition' - cognitive learning rate (`float`, default: `1.49`), * 'society' - social learning rate (`float`, default: `1.49`), * 'max_ratio_v' - maximal ratio of velocities w.r.t. search range (`float`, default: `0.2`). Examples -------- Use the optimizer to minimize the well-known test function `Rosenbrock <http://en.wikipedia.org/wiki/Rosenbrock_function>`_: .. code-block:: python :linenos: >>> import numpy >>> from pypop7.benchmarks.base_functions import rosenbrock # function to be minimized >>> from pypop7.optimizers.pso.cpso import CPSO >>> problem = {'fitness_function': rosenbrock, # define problem arguments ... 'ndim_problem': 2, ... 'lower_boundary': -5*numpy.ones((2,)), ... 'upper_boundary': 5*numpy.ones((2,))} >>> options = {'max_function_evaluations': 5000, # set optimizer options ... 'seed_rng': 2022} >>> cpso = CPSO(problem, options) # initialize the optimizer class >>> results = cpso.optimize() # run the optimization process >>> # return the number of function evaluations and best-so-far fitness >>> print(f"CPSO: {results['n_function_evaluations']}, {results['best_so_far_y']}") CPSO: 5000, 0.3085868239334274 For its correctness checking of coding, refer to `this code-based repeatability report <https://tinyurl.com/27nx42rm>`_ for more details. Attributes ---------- cognition : `float` cognitive learning rate, aka acceleration coefficient. max_ratio_v : `float` maximal ratio of velocities w.r.t. search range. n_individuals : `int` swarm (population) size, aka number of particles. society : `float` social learning rate, aka acceleration coefficient. References ---------- Van den Bergh, F. and Engelbrecht, A.P., 2004. A cooperative approach to particle swarm optimization. IEEE Transactions on Evolutionary Computation, 8(3), pp.225-239. https://ieeexplore.ieee.org/document/1304845 """ def __init__(self, problem, options): PSO.__init__(self, problem, options) self.cognition = options.get('cognition', 1.49) # cognitive learning rate assert self.cognition >= 0.0 self.society = options.get('society', 1.49) # social learning rate assert self.society >= 0.0 self._max_generations = np.ceil(self.max_function_evaluations/(self.n_individuals*self.ndim_problem)) self._w = 1.0 - (np.arange(self._max_generations) + 1.0)/self._max_generations # from 1.0 to 0.0 def iterate(self, v=None, x=None, y=None, p_x=None, p_y=None, n_x=None, args=None): fitness = [] for j in range(self.ndim_problem): if self._check_terminations(): return v, x, y, p_x, p_y, n_x, fitness cognition_rand = self.rng_optimization.uniform(size=(self.n_individuals, self.ndim_problem)) society_rand = self.rng_optimization.uniform(size=(self.n_individuals, self.ndim_problem)) for i in range(self.n_individuals): if self._check_terminations(): return v, x, y, p_x, p_y, n_x, fitness n_x[i, j] = p_x[np.argmin(p_y), j] v[i, j] = (self._w[min(self._n_generations, len(self._w))]*v[i, j] + self.cognition*cognition_rand[i, j]*(p_x[i, j] - x[i, j]) + self.society*society_rand[i, j]*(n_x[i, j] - x[i, j])) # velocity update v[i, j] = np.clip(v[i, j], self._min_v[j], self._max_v[j]) x[i, j] += v[i, j] # position update xx = np.copy(self.best_so_far_x) xx[j] = x[i, j] y[i] = self._evaluate_fitness(xx, args) fitness.append(y[i]) if y[i] < p_y[i]: # online update p_x[i, j], p_y[i] = x[i, j], y[i] self._n_generations += 1 return v, x, y, p_x, p_y, n_x, fitness def optimize(self, fitness_function=None, args=None): fitness = Optimizer.optimize(self, fitness_function) v, x, y, p_x, p_y, n_x = self.initialize(args) yy = y # only for printing while not self.termination_signal: self._print_verbose_info(fitness, yy) v, x, y, p_x, p_y, n_x, yy = self.iterate(v, x, y, p_x, p_y, n_x, args) return self._collect(fitness, yy)