Cooperative Particle Swarm Optimizer (CPSO)¶
- class pypop7.optimizers.pso.cpso.CPSO(problem, options)¶
Cooperative Particle Swarm Optimizer (CPSO).
- Parameters:
problem (dict) –
- problem arguments with the following common settings (keys):
’fitness_function’ - objective function to be minimized (func),
’ndim_problem’ - number of dimensionality (int),
’upper_boundary’ - upper boundary of search range (array_like),
’lower_boundary’ - lower boundary of search range (array_like).
options (dict) –
- optimizer options with the following common settings (keys):
’max_function_evaluations’ - maximum of function evaluations (int, default: np.Inf),
’max_runtime’ - maximal runtime to be allowed (float, default: np.Inf),
’seed_rng’ - seed for random number generation needed to be explicitly set (int);
- and with the following particular settings (keys):
’n_individuals’ - swarm (population) size, aka number of particles (int, default: 20),
’cognition’ - cognitive learning rate (float, default: 1.49),
’society’ - social learning rate (float, default: 1.49),
’max_ratio_v’ - maximal ratio of velocities w.r.t. search range (float, default: 0.2).
Examples
Use the optimizer to minimize the well-known test function Rosenbrock:
1>>> import numpy 2>>> from pypop7.benchmarks.base_functions import rosenbrock # function to be minimized 3>>> from pypop7.optimizers.pso.cpso import CPSO 4>>> problem = {'fitness_function': rosenbrock, # define problem arguments 5... 'ndim_problem': 2, 6... 'lower_boundary': -5*numpy.ones((2,)), 7... 'upper_boundary': 5*numpy.ones((2,))} 8>>> options = {'max_function_evaluations': 5000, # set optimizer options 9... 'seed_rng': 2022} 10>>> cpso = CPSO(problem, options) # initialize the optimizer class 11>>> results = cpso.optimize() # run the optimization process 12>>> # return the number of function evaluations and best-so-far fitness 13>>> print(f"CPSO: {results['n_function_evaluations']}, {results['best_so_far_y']}") 14CPSO: 5000, 0.3085868239334274
For its correctness checking of coding, refer to this code-based repeatability report for more details.
- cognition¶
cognitive learning rate, aka acceleration coefficient.
- Type:
float
- max_ratio_v¶
maximal ratio of velocities w.r.t. search range.
- Type:
float
- n_individuals¶
swarm (population) size, aka number of particles.
- Type:
int
- society¶
social learning rate, aka acceleration coefficient.
- Type:
float
References
Van den Bergh, F. and Engelbrecht, A.P., 2004. A cooperative approach to particle swarm optimization. IEEE Transactions on Evolutionary Computation, 8(3), pp.225-239. https://ieeexplore.ieee.org/document/1304845