Model Reference Adaptive Search (MRAS)¶
- class pypop7.optimizers.cem.mras.MRAS(problem, options)¶
Model Reference Adaptive Search (MRAS).
- Parameters:
problem (dict) –
- problem arguments with the following common settings (keys):
’fitness_function’ - objective function to be minimized (func),
’ndim_problem’ - number of dimensionality (int),
’upper_boundary’ - upper boundary of search range (array_like),
’lower_boundary’ - lower boundary of search range (array_like).
options (dict) –
- optimizer options with the following common settings (keys):
’max_function_evaluations’ - maximum of function evaluations (int, default: np.Inf),
’max_runtime’ - maximal runtime to be allowed (float, default: np.Inf),
’seed_rng’ - seed for random number generation needed to be explicitly set (int);
- and with the following particular settings (keys):
’sigma’ - initial global step-size, aka mutation strength (float),
’mean’ - initial (starting) point, aka mean of Gaussian search distribution (array_like),
if not given, it will draw a random sample from the uniform distribution whose search range is bounded by problem[‘lower_boundary’] and problem[‘upper_boundary’].
’n_individuals’ - number of offspring, aka offspring population size (int, default: 1000),
’p’ - percentage of samples as parents (int, default: 0.1),
’alpha’ - increasing factor of samples/individuals (float, default: 1.1),
’v’ - smoothing factor for search distribution update (float, default: 0.2).
Examples
Use the optimizer to minimize the well-known test function Rosenbrock:
1>>> import numpy 2>>> from pypop7.benchmarks.base_functions import rosenbrock # function to be minimized 3>>> from pypop7.optimizers.cem.mras import MRAS 4>>> problem = {'fitness_function': rosenbrock, # define problem arguments 5... 'ndim_problem': 2, 6... 'lower_boundary': -5*numpy.ones((2,)), 7... 'upper_boundary': 5*numpy.ones((2,))} 8>>> options = {'max_function_evaluations': 5000, # set optimizer options 9... 'seed_rng': 2022, 10... 'sigma': 10} # the global step-size may need to be tuned for better performance 11>>> mras = MRAS(problem, options) # initialize the optimizer class 12>>> results = mras.optimize() # run the optimization process 13>>> # return the number of function evaluations and best-so-far fitness 14>>> print(f"MRAS: {results['n_function_evaluations']}, {results['best_so_far_y']}") 15MRAS: 5000, 0.18363570418709932
For its correctness checking of coding, refer to this code-based repeatability report for more details.
- alpha¶
increasing factor of samples/individuals.
- Type:
float
- mean¶
initial (starting) point, aka mean of Gaussian search distribution.
- Type:
array_like
- n_individuals¶
number of offspring, aka offspring population size.
- Type:
int
- p¶
percentage of samples as parents.
- Type:
float
- sigma¶
initial global step-size, aka mutation strength,
- Type:
float
- v¶
smoothing factor for search distribution update.
- Type:
float
References
Hu, J., Fu, M.C. and Marcus, S.I., 2007. A model reference adaptive search method for global optimization. Operations Research, 55(3), pp.549-568. https://pubsonline.informs.org/doi/abs/10.1287/opre.1060.0367