Standard Cross-Entropy Method (SCEM)¶
- class pypop7.optimizers.cem.scem.SCEM(problem, options)¶
Standard Cross-Entropy Method (SCEM).
Note
SCEM uses the fixed smoothing strategy to update the mean and std of Gaussian search (mutation/sampling) distribution in an online fashion.
- Parameters:
problem (dict) –
- problem arguments with the following common settings (keys):
’fitness_function’ - objective function to be minimized (func),
’ndim_problem’ - number of dimensionality (int),
’upper_boundary’ - upper boundary of search range (array_like),
’lower_boundary’ - lower boundary of search range (array_like).
options (dict) –
- optimizer options with the following common settings (keys):
’max_function_evaluations’ - maximum of function evaluations (int, default: np.Inf),
’max_runtime’ - maximal runtime to be allowed (float, default: np.Inf),
’seed_rng’ - seed for random number generation needed to be explicitly set (int);
- and with the following particular settings (keys):
’sigma’ - initial global step-size, aka mutation strength (float),
’mean’ - initial (starting) point, aka mean of Gaussian search distribution (array_like),
if not given, it will draw a random sample from the uniform distribution whose search range is bounded by problem[‘lower_boundary’] and problem[‘upper_boundary’].
’n_individuals’ - offspring population size (int, default: 1000),
’n_parents’ - parent population size (int, default: 200),
’alpha’ - smoothing factor (float, default: 0.8).
Examples
Use the optimizer to minimize the well-known test function Rosenbrock:
1>>> import numpy 2>>> from pypop7.benchmarks.base_functions import rosenbrock # function to be minimized 3>>> from pypop7.optimizers.cem.scem import SCEM 4>>> problem = {'fitness_function': rosenbrock, # define problem arguments 5... 'ndim_problem': 100, 6... 'lower_boundary': -5*numpy.ones((100,)), 7... 'upper_boundary': 5*numpy.ones((100,))} 8>>> options = {'max_function_evaluations': 1000000, # set optimizer options 9... 'seed_rng': 2022, 10... 'sigma': 0.3} # the global step-size may need to be tuned for better performance 11>>> scem = SCEM(problem, options) # initialize the optimizer class 12>>> results = scem.optimize() # run the optimization process 13>>> # return the number of function evaluations and best-so-far fitness 14>>> print(f"SCEM: {results['n_function_evaluations']}, {results['best_so_far_y']}") 15SCEM: 1000000, 45712.10913791263
For its correctness checking of coding, refer to this code-based repeatability report for more details.
- alpha¶
smoothing factor.
- Type:
float
- mean¶
initial (starting) point, aka mean of Gaussian search distribution.
- Type:
array_like
- n_individuals¶
number of offspring, aka offspring population size.
- Type:
int
- n_parents¶
number of parents, aka parental population size.
- Type:
int
- sigma¶
initial global step-size, aka mutation strength.
- Type:
float
References
Kroese, D.P., Porotsky, S. and Rubinstein, R.Y., 2006. The cross-entropy method for continuous multi-extremal optimization. Methodology and Computing in Applied Probability, 8(3), pp.383-407. https://link.springer.com/article/10.1007/s11009-006-9753-0 (See [Appendix B Main CE Program] for the official Matlab code.)
De Boer, P.T., Kroese, D.P., Mannor, S. and Rubinstein, R.Y., 2005. A tutorial on the cross-entropy method. Annals of Operations Research, 134(1), pp.19-67. https://link.springer.com/article/10.1007/s10479-005-5724-z