Noisy Simulated Annealing (NSA)¶
- class pypop7.optimizers.sa.nsa.NSA(problem, options)¶
Noisy Simulated Annealing (NSA).
Note
This is a slightly modified version of discrete NSA for continuous optimization.
- Parameters:
problem (dict) –
- problem arguments with the following common settings (keys):
’fitness_function’ - objective function to be minimized (func),
’ndim_problem’ - number of dimensionality (int),
’upper_boundary’ - upper boundary of search range (array_like),
’lower_boundary’ - lower boundary of search range (array_like).
options (dict) –
- optimizer options with the following common settings (keys):
’max_function_evaluations’ - maximum of function evaluations (int, default: np.Inf),
’max_runtime’ - maximal runtime to be allowed (float, default: np.Inf),
’seed_rng’ - seed for random number generation needed to be explicitly set (int);
- and with the following particular settings (keys):
’x’ - initial (starting) point (array_like),
’sigma’ - initial global step-size (float),
’is_noisy’ - whether or not to minimize a noisy cost function (bool, default: False),
’schedule’ - schedule for sampling intensity (str, default: linear),
currently only two (linear or quadratic) schedules are supported for sampling intensity,
’n_samples’ - number of samples (int),
’rt’ - reducing factor of annealing temperature (float, default: 0.99).
Examples
Use the optimizer to minimize the well-known test function Rosenbrock:
1>>> import numpy 2>>> from pypop7.benchmarks.base_functions import rosenbrock # function to be minimized 3>>> from pypop7.optimizers.sa.nsa import NSA 4>>> problem = {'fitness_function': rosenbrock, # define problem arguments 5... 'ndim_problem': 2, 6... 'lower_boundary': -5*numpy.ones((2,)), 7... 'upper_boundary': 5*numpy.ones((2,))} 8>>> options = {'max_function_evaluations': 5000, # set optimizer options 9... 'seed_rng': 2022, 10... 'x': 3*numpy.ones((2,)), 11... 'sigma': 1.0, 12... 'temperature': 100.0} 13>>> nsa = NSA(problem, options) # initialize the optimizer class 14>>> results = nsa.optimize() # run the optimization process 15>>> # return the number of function evaluations and best-so-far fitness 16>>> print(f"NSA: {results['n_function_evaluations']}, {results['best_so_far_y']}") 17NSA: 5000, 0.006086567926462302
For its correctness checking of coding, the code-based repeatability report cannot be provided owing to the lack of some details of its experiments in the original paper.
- is_noisy¶
whether or not to minimize a noisy cost function.
- Type:
bool
- n_samples¶
number of samples for each iteration.
- Type:
int
- rt¶
reducing factor of annealing temperature.
- Type:
float
- schedule¶
schedule for sampling intensity.
- Type:
str
- sigma¶
global step-size (fixed during optimization).
- Type:
float
- x¶
initial (starting) point.
- Type:
array_like
References
Bouttier, C. and Gavra, I., 2019. Convergence rate of a simulated annealing algorithm with noisy observations. Journal of Machine Learning Research, 20(1), pp.127-171. https://www.jmlr.org/papers/v20/16-588.html